ON THE MAGNITUDE AND SIGN OF THE ⁵J METHOXY-PROTON COUPLING IN 2,4-DIBROMO-ANISOL

H. Angad Gaur and J. Vriend

Department of Technical Physics, Technische Hogeschool, Delft (The Netherlands)

and

W. G. B. Huysmans

Central Research Institute of AKU (Algemene Kunstzijde Unie N.V.) and Affiliated Companies, Arnhem (The Netherlands)

(Received in UK 21 April 1969; accepted for publication 28 April 1969)

Current literature (1-11) devotes much attention to long range coupling constants. Generally, the magnitude of the long range coupling can be easily determined by assuming first order splitting. However, access to the relative sign is more difficult and possible only in some cases (1,3, 10). In connection with the above we would like to report our results of spin-spin interactions via five and six bonds in 2,4-dibromo-anisol (DBA).

The chemical shift values and the coupling constants of DBA are given in TABLE I. FIG. 1a and 1b show the 60 MHz spectrum of the sample. By comparing the absolute values of the coupling constants between the ring protons, determined from FIG. 1a, with values reported for this in literature (12,13), the various groups of resonances were assigned to the corresponding protons in the molecule.

The doublet signal of the OCH₃ protons (FIG. 1b) is due to coupling with the ortho ring proton H_A. The quintet structure of the resonances of proton H_A (FIG. 1d) is caused by coupling with proton H_C (FIG. 1c) and with the methoxy protons. This is proved by decoupling the ring proton spectrum from the methoxy protons (FIG. 1e and 1f). The H_A quintets become doublets (FIG. 1f), thus showing the coupling between the protons H_A and H_C. At the same time the resonances of proton H_B "wiggle" better. This is an indication for a weak coupling with the methoxy protons. In TABLE I an estimate of the magnitude of this coupling is given. The resonances of proton H_C remain unchanged.

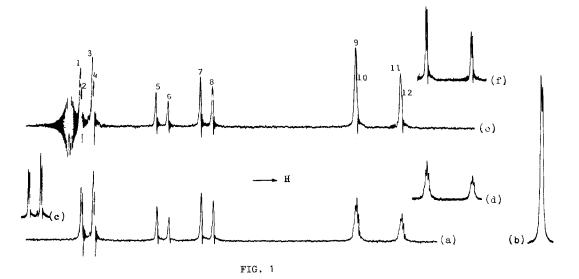
The relative signs of the coupling constants between the ring protons were determined by means of Triple Resonance. For that purpose the resonances of the ring protons were decoupled from the OCH₂ group. Simultaneously the following peaks were irradiated successively:

- 1. The high-field doublet of H_A (peaks 11 and 12, FIG. 1e). Then the high-field doublet of proton H_C was decoupled. Therefore J_{AB} and J_{BC} have the same sign.
- 2. The high-field peak of proton H_B (peak 8). The high-field resonance of each of the H_C doublets (peaks 2 and 4) is split. So J_{AR} and J_{AC} have the same sign.

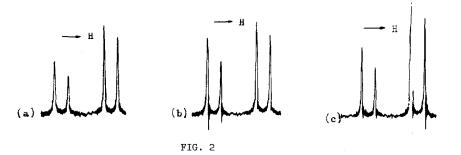
From the above it follows that the coupling constants between the ring protons all have the same sign.

TABLE I

Chemical shift values and coupling constants of DBA


Compound (DBA)	Protons	Chemical shift ^{a)} (& in ppm)	Coupling constants ^{a)} (in Hz)
Da	А	6.65	$J_{AB} = \pm 8.77$
$H_{\rm B}$	В	7.27	$J_{AC} = \pm 0.23$
	С	7.59	$J_{BC} = \pm 2.38$
H _A Br	D	3.80	$J_{AD} = - 0.33$
(D)H ₃ C			J _{BD} < 0.1

a) The spectra were recorded at room temperature from 9 (w/w) % deoxygenated solutions in CCl_{\downarrow} . The spectrometer was a Varian DA 60-IL. The chemical shift values (from TMS, $\delta = 0$ ppm) are accurate to within ± 0.01 ppm and the coupling constants to within ± 0.02 Hz.


The relative sign of the $OCH_3^{-H_A}$ coupling was determined by means of Double Resonance (DR). FIG. 2a shows the H_B resonances before DR. Upon irradiation of the high-field resp. the low-field peak of the OCH₃ doublet, the low-field (FIG. 2b) resp. the high-field doublet (FIG. 2c) of the H_B resonances sharpens and forms "wiggles": in other words, they are decoupled. Therefore J_{AD} and J_{AB} have different sign.

In various aromatic molecules it appears that all H-H coupling constants between the ring protons have the same sign (12-14). Furthermore Buckingham and McLauchlan (15) have shown that the $J_{\rm HH}$ (ortho) value in p-nitrotoluene is positive. It seems likely that this also applies in our case. Therefore all ring proton coupling constants are positive in DBA. Consequently the methoxy-proton coupling with the ortho ring proton is negative.

In DBA we expect the rotation of the OCH_2 group around the oxygen-aromatic carbon axis to be

The 60 MHz spectrum of the ring protons (a) and the methoxy protons (b) of DBA at room temperature. The spectrum of proton H_C (c) and of proton H_A (d) at slow sweep rate (\sim 1 Hz/minute). (e) and (f). The ring proton spectrum decoupled from the methoxy group. In (f) the H_A resonances are recorded at a very slow sweep rate (\sim 1 Hz/minute).

The spectrum of proton H_B . (a) Unperturbed. (b) The low-field H_B -doublet is decoupled upon irradiation of the high-field peak of the OCH₃ resonances. (c) The high-field H_B -doublet is decoupled upon irradiation of the low-field peak of the OCH₃ resonances.

somewhat restricted due to interaction with the neighbouring ring bromide-substituent. Then on an average the 0-CH₃ axis should be mainly in the plane of the aromatic ring with the methyl group pointing towards the ortho ring proton. Obviously this situation is favourable for the coupling between the 0CH₃ protons and the H (ortho) proton (here $|J_{AD}| = 0.33$ Hz), because in cases where the 0CH₃ group rotates freely around the oxygen-aromatic carbon axis, the coupling is hardly observable or not all (5,6,11). This we see clearly in 4-bromo-anisol and 1,4-dimethoxy-2,6-dimethyl-phenol, where the magnitude of this coupling is 0.18 (± 0.03) Hz - obtained from decoupling experiments - and respectively 0.15 (± 0.03) Hz - obtained from a poorly resolved 0CH₃ triplet - (16).

The coupling of the OCH₃ protons with the meta ring proton is estimated at 0.1 Hz.

REFERENCES

- 1. S. Sternhell, <u>Rev. Pure Appl. Chem</u>. <u>14</u>, 15 (1964) and references cited herein.
- 2. D. T. Witiak, P. B. Patel and Y. Lin, <u>J. Am. Chem. Soc</u>. <u>89</u>, 1908 (1967).
- 3. G. Kotowycz and T. Shaefer, <u>Canad. J. Chem</u>. <u>44</u>, 2743 (1966).
- 4. G. P. Newsoroff and S. Sternhell, Aust. J. Chem. 21, 747 (1968).
- 5. S. Forsén, <u>J. Phys. Chem</u>. <u>67</u>, 1740 (1963).
- 6. S. Forsén, B. Åkermark and T. Alm, Acta Chem. Scand. 18, 2313 (1964).
- 7. V. F. Bystrov and A. U. Stepanyants, <u>J. Mol. Spectroscopy</u> <u>21</u>, 241 (1966).
- M. Barfield and D. M. Grant, <u>Advances in Magnetic Resonance</u> Vol. I, p. 149, edited by J. S. Waugh, Academic Press, London (1965).
- 9. W. H. de Jeu, Ph. D. Thesis, (1969), Delft, University of Technology.
- W. G. B. Huysmans, J. G. Westra, W. J. Mijs, H. Angad Gaur, J. Vriend and J. Smidt, <u>Tetrahedron Letters</u> 4345 (1968).
- 11. R. W. Crecely, K. W. McCracken and J. H. Goldstein, <u>Tetrahedron</u> 25, 877 (1969).
- 12. H. S. Gutowsky, C. H. Holm, A. Saika and G. A. Williams, <u>J. Am. Chem. Soc</u>. <u>79</u>, 4596 (1957).
- 13. D. M. Grant, R. C. Horst and H. S. Gutowsky, <u>J. Chem. Phys</u>. <u>38</u>, 470 (1963).
- 14. J. Martin and B. P. Daily, <u>J. Chem. Phys</u>. <u>37</u>, 2594 (1962).
- 15. A. D. Buckingham and K. A. McLauchlan, Proc. Chem. Soc. 144 (1963).
- 16. Unpublished results, obtained by the authors.